Энергоинформ /
Новости /
Новости мира Энергии за 2019 год /
Не поле перейти
26.08.2019. Не поле перейти
Электромагнитные излучения окружают горожан повсюду – от линий электропередачи и электротранспорта до бытовых приборов и мобильных телефонов. Есть ли способы уберечься от их влияния?
Ты со мной, мое поле
Естественный электромагнитный фон с каждым годом дополняется новыми техногенными источниками, влияние которых до конца не изучено и не подкреплено нормативными документами. Интерес к механизму воздействия электромагнитных волн на человека появился еще в 1870 х годах, как только электричество стало частью городского быта. С тех пор изменились как источники электромагнитных полей, так и насыщенность электромагнитного фона, который существенно отличается от природного.
Специалисты выделяют несколько групп излучателей электромагнитных волн. Во-первых, это источники радиочастотного диапазона – телерадиовещание, радиолокационная техника, средства радиосвязи, в том числе антенны мобильной связи, которые теперь вносят существенный вклад в радиочастотный фон городской среды. Ко второй группе относят источники промышленных частот: линии электропередачи, трансформаторные подстанции, системы электроснабжения зданий, городской транспорт. В третью группу входят источники широкополосного излучения в офисах и квартирах: бытовая, осветительная и компьютерная техника.
О том, в какой мере все эти источники в совокупности и по отдельности опасны и насколько уязвим современный человек, мнения расходятся. Одни эксперты предлагают не драматизировать ситуацию, помня об эволюционном привыкании биоорганизмов к новым, меняющимся в процессе эволюции электромагнитным полям. Другие – и их большинство – наоборот, ссылаются на участившиеся случаи опасных заболеваний, которые усугубляются под одновременным воздействием распределенных источников в самом широком диапазоне частот.
Чаще всего методы защиты от электромагнитных полей носят пассивный характер, их задача – свести к минимуму эффект воздействия. Например, соблюдать санитарные нормы и правила, реже пользоваться электротехникой, держаться подальше от источников излучения: для компьютеров рекомендовано расстояние в 0,2 0,3 м, для микроволновок – в 1,5 2 м, для высоковольтных линий электропередачи – в 25 30 м. Вместе с тем созданы материалы, которые способны эффективно противостоять влиянию техногенных электромагнитных полей.
Наноматериалы на защите макрообъектов
Генеральный директор «Научно-технического центра прикладных нанотехнологий» Андрей Пономарев достает черный лоскуток, по размеру и плотности похожий на карманный платок, заворачивает в него смартфон, и тот сразу же оказывается вне зоны доступа. Так работает одна из инновационных разработок петербургской компании, известной как производитель астраленов. Это наноразмерные частицы-«бублики», которые представляют собой многослойные полиэдральные структуры из атомов углерода. На основе астраленов в компании создают наномодифицированные материалы с уникальными свойствами для самых разных областей применения: в промышленности и строительстве для композитных бетонов, противоизносной добавки к конструкционным материалам и смазкам, в качестве элемента холодных катодов, нелинейно-оптических систем и многих других.
«Это образец карбонизированного нетканого полиакрилонитрила, который пропитан водноспиртовой суспензией из особого набора наночастиц, – поясняет глава НТЦ. – Необычный эффект удается получить за счет сочетания специально подобранных компонентов со свойствами нелинейности поглощения (и отражения) электромагнитной волны. При этом нелинейность системы, обусловленная агломерацией частиц, позволила расширить диапазон поглощаемых частот от десятков мегагерц практически в террагерцовую область и создать широкополосный радиоэкранирующий материал».
ВОЗ определяет критическую величину влияния магнитного поля на организм человека величиной 0,3-0,4 мкТл, ссылаясь на существующую корреляцию между воздействием магнитного поля свыше этой величины и онкологической заболеваемостью.
Общий принцип действия большинства защитных составов основан на убывании энергии электромагнитного поля при прохождении через слои материала с радиопоглощающими элементами. В качестве поглощающих материалов выступают сажи, углеродные волокна, порошки ферритов или карбонильного железа и другие наполнители.
Штукатурные, грунтовочные и лакокрасочные составы с поглощающими добавками используются для нейтрализации излучений в специальных помещениях, но есть предприятия, массово производящие общестроительные смеси с такими же свойствами. Примером могут служить магнезиально-шунгитовые смеси для отделки квартир и офисов. По данным компании-производителя, максимальная эффективность материалов (80 % поглощения) достигается в диапазоне частот мобильной связи – от 900 МГц до 2000 МГц. Но как быть с мощными низкочастотными излучениями от привычных электроустановок, работающих на частотах 50 Гц?
Магнитные поля остаются за экраном
Экранирующий материал того или иного состава характеризуется лучшей поглощающей способностью при определенных частотах. Наибольшую обеспокоенность у людей обычно вызывают устройства мобильной связи, усиливающие антенные удлинители и роутеры, работающие в диапазоне от 800 МГц до 2,4 5 ГГц. Экранированию низкочастотных излучений в быту уделяется меньше внимания, хотя при большой мощности такой источник также может оказаться небезопасным. Многие даже не подозревают, что значит жить с мощным трансформатором за стеной.
НИЦ «Курчатовский институт» – ЦНИИ КМ «Прометей» уже в течение 15 лет ведет исследования по созданию магнитных экранов. Здесь разработана и запатентована перспективная технология получения экранирующих композитов на основе аморфных и нанокристаллических сплавов в виде рулонных материалов, предназначенных для создания статических магнитных экранов различного назначения.
Разработчики уверяют, что эти тонкие, легкие и гибкие ленты способны экранировать магнитные поля мощностью до 100 300 мкТл в диапазоне частот от 0 до 100 кГц. Впервые этот материал был испытан для защиты стандартного силового кабеля АВВГ 4×24: измерения магнитного поля частотой 50 Гц вокруг кабеля с экраном показало снижение поля в 100 500 раз.
Только в жилых домах Санкт-Петербурга установлено более 500 таких подстанций, которые способны оказывать вредное воздействие на здоровье жильцов прилегающих квартир.
Предлагаемое техническое решение может быть также использовано для экранирования силовых щитов и трансформаторных подстанций, создания магнитовакуумных камер (патент РФ № 2402892), защитной одежды для персонала, токоведущих частей электропоездов, а также экранирующих боксов и накидок для противодействия террористической деятельности.
Что касается гражданского строительства, то наиболее востребованной сферой применения магнитных экранов обещает стать защита от влияния встроенных трансформаторных подстанций. Только в жилых домах Санкт-Петербурга установлено более 500 таких подстанций, которые способны оказывать вредное воздействие на здоровье жильцов прилегающих квартир за счет ряда физических факторов: акустического шума, вибраций и электромагнитных полей. Наиболее существенной составляющей электромагнитного поля, излучаемого подстанцией, является переменное магнитное поле промышленной частоты 50 Гц.
Предельно допустимые уровни (ПДУ) физических воздействующих факторов в жилых домах определяются «Санитарно-эпидемиологическими требованиями к жилым зданиям и помещениям» (СанПиН 2.1.2.1002 00). Для магнитного поля промышленной частоты – это 10 мкТл в жилых помещениях и 50 мкТл на прилегающих территориях. В московском Институте медицины труда разработаны нормы для магнитного поля промышленной частоты в жилых помещениях – 5 мкТл, на прилегающих территориях – 10 мкТл, которые внесены в Гигиенический норматив (ГН 2.1.8 / 2.2.4.2262 07), утвержденный в 2007 году. Всемирная организации здравоохранения намного более жестко определяет критическую величину влияния магнитного поля на организм человека – 0,3 0,4 мкТл, ссылаясь на существующую корреляцию между воздействием магнитного поля свыше этой величины и онкологической заболеваемостью.
По приближенным расчетам, для трансформатора мощностью 640 кВА, установленного на первом этаже дома, магнитное поле на уровне пола второго этажа над сборными шинами трансформатора и шинным мостом достигает величины 50 мкТл, что значительно превышает действующие ПДУ для жилых помещений.
Существует два способа уменьшения излучаемых магнитных полей: пассивное подавление – экранирование или активное подавление – компенсация. Для активного подавления используют систему магнитных катушек, которые создают магнитное поле, направленное противоположно исходному и приблизительно равное ему по величине – этот метод более затратный, энергоемкий и осложняется тем, что амплитуда колебаний и геометрия магнитного поля зависят от нагрузки трансформатора, которая в свою очередь постоянно меняется в течение времени.
Принцип действия защитных составов основан на убывании энергии электромагнитного поля при прохождении через слои материала с радиопоглощающими элементами.
В случае экранирования излучающий объект ограждается специальным экраном из материала с большой магнитной проницаемостью. Чем больше магнитная проницаемость и толщина экрана, тем эффективней ослабление поля. При этом экранировать можно всю подстанцию целиком или наиболее критичные ее элементы: сборные шины трансформаторов и шинные мосты между трансформаторами и низковольтными распределительными устройствами, так как именно в них протекает наибольший по величине ток.
Чтобы рассчитать параметры такого экрана для трансформаторной подстанции, разработана удобная программа моделирования двумерных полей ELCUT, в которой учитываются нелинейные свойства ферромагнитной среды, а также реальные магнитные характеристики экранирующего сплава, измеренные экспериментально. Дело за разумным потребителем.
Источник: Энергетика и промышленность России / Татьяна Рейтер